
Apple iOS 4 Security Evaluation
Dino A. Dai Zovi
Trail of Bits LLC

Wednesday, January 25, 12



Focus of This Talk

What enterprise users need to know about iOS security 
features and properties to make informed deployment, 
configuration, usage, and procedure decisions

Assorted iOS implementation details and internals

Interesting places for reverse engineers and vulnerability 
researchers to look (if they are paying close attention)

Wednesday, January 25, 12



iOS 4 vs. iOS 5

Except where stated otherwise, everything in this 
talk refers to the latest versions of iOS 4

I’m still working on analyzing iOS 5

Updates on material for iOS 5 will be presented 
at a future conference

Wednesday, January 25, 12



Overview

Introduction

ASLR

Code Signing

Sandboxing

Data Encryption

Wednesday, January 25, 12



Introduction

Wednesday, January 25, 12



Security Concerns
Sensitive data compromise from lost/stolen device

What data can be recovered by attacker?

Malicious Apps

What is the likelihood of DroidDream for iOS?

Remote attacks through web browser, e-mail, etc.

Is that a desktop (aka APT target) in your pocket?

Wednesday, January 25, 12



Address Space Layout 
Randomization

Wednesday, January 25, 12



Security Concerns
How hard is it to remotely exploit built-in or third-
party applications?

Malicious web page in Safari or third-party app 
with embedded browser (i.e Facebook, Twitter)

Malicious e-mail message or attachment in Mail

Man-in-the-middle and corrupt network 
communication of third-party apps

Wednesday, January 25, 12



iOS 4.3 ASLR
ASLR is a common runtime security feature on desktop 
and server operating systems and is a good generic 
protection against remote exploits

iOS 4.3 introduced ASLR support

iOS 4.3 requires iPhone 3GS and later (ARMv7)

Apps must be compiled with PIE support for full ASLR, 
otherwise they only get partial ASLR

iOS 4.3 built-in apps and executables are all PIE

Wednesday, January 25, 12



Partial vs. Full ASLR

PIE Main 
Executable Heap Stack Shared 

Libraries Linker

No Fixed
Randomized 

per 
execution

Fixed
Randomized 
per device 

boot
Fixed

Yes
Randomized 

per 
execution

Randomized 
per execution

(more 
entropy)

Randomized 
per 

execution

Randomized 
per device 

boot

Randomized 
per 

execution

Wednesday, January 25, 12



PIE in Real-World Apps?

Wednesday, January 25, 12



Top 10 Free Apps (July 2011)
App Version Post Date PIE

Songify 1.0.1 June 29, 2011 No
Happy Theme Park 1.0 June 29, 2011 No
Cave Bowling 1.10 June 21, 2011 No

Movie-Quiz Lite 1.3.2 May 31, 2011 No
Spotify 0.4.14 July 6, 2011 No

Make-Up Girls 1.0 July 5, 2011 No
Racing Penguin, Flying Free 1.2 July 6, 2011 No

ICEE Maker 1.01 June 28, 2011 No
Cracked Screen 1.0 June 24, 2011 No

Facebook 3.4.3 June 29, 2011 No

Wednesday, January 25, 12



Bottom Line
All built-in apps in iOS 4.3 have full ASLR with PIE support

Third-party apps are rarely compiled with PIE support and run 
with partial ASLR

Static location of dyld facilitates exploitation by providing 
known executable material at a known place (code reuse, 
return-oriented programming, etc)

Applications using a UIWebView are the highest risk 
(embedded browser in Twitter, Facebook, etc)

Wednesday, January 25, 12



Code Signing

Wednesday, January 25, 12



Security Concerns
Can this application be trusted to run on my 
device?

Who (real-world entity) wrote it?

How do we know it’s really them?

Does it have any hidden functionality?

Can it change functionality at run time?

Wednesday, January 25, 12



Code Signing
Mandatory Code Signing

Every executable binary or application must have a valid 
and trusted signature

Enforced when an application or binary is executed

Code Signing Enforcement

Processes may only execute code that has been signed 
with a valid and trusted signature

Enforced at runtime

Wednesday, January 25, 12



iOS 4.3 Adds JavaScript JIT

Wednesday, January 25, 12



Dynamic Code Signing

The dynamic-codesigning entitlement allows the 
process to map anonymous memory with any 
specified protections.

Only MobileSafari has this entitlement in iOS 4.3

Necessary for JavaScript native JIT (“Nitro”)

Previously MobileSafari did bytecode JIT

Wednesday, January 25, 12



Bottom Line
Mandatory Code Signing in iOS is strong defense against execution 
of unauthorized binaries

Requires incomplete code signing exploits to bypass and obtain 
return-oriented execution

Code signing forces attackers to develop 100% fully ROP payloads

DEP/NX only require a ROP stage to allocate new executable 
memory and copy shellcode into it

JIT support in Safari reduces ROP requirements to a temporary 
stage, similar to what is needed to evade DEP/NX

Wednesday, January 25, 12



Sandboxing

Wednesday, January 25, 12



Security Concerns
Can an exploited app or malicious third-party 
app...

Access or modify data belonging to other 
applications?

Access or modify potentially sensitive user 
information?

Break out of the sandbox and rootkit iOS?

Wednesday, January 25, 12



App Container Profile
See whitepaper for detailed description and tarball for fully 
decompiled profile

Summary:

File access is generally restricted to app’s home directory

Can read user’s media: songs, photos, videos 

Can read and write AddressBook

Some IOKit User Clients are allowed

All Mach bootstrap servers are allowed

Wednesday, January 25, 12



Bottom Line
Remote exploits are most likely able to break out of sandbox by 
exploiting iOS kernel or IOKit UserClients permitted by sandbox 
profile

Rogue applications would need to exploit and jailbreak the kernel to 
escape sandbox

Could repurpose kernel exploits from Jailbreaks

Apple’s review will likely not catch this, but they could use kill 
switch to remove app from all users’ devices

OTA app distribution bypasses Apple’s review (target user 
interaction required)

Wednesday, January 25, 12



Data Encryption

Wednesday, January 25, 12



Security Concerns
What sensitive data may be compromised if a 
device is lost or stolen?

What data is encrypted?

What data is protected by the passcode?

How hard is it to crack iOS passcodes?

Can they be cracked off the device?

Wednesday, January 25, 12



Data Protection API
Applications must specifically mark files on the 
filesystem and Keychain items with a Protection 
Class in order for them receive greater protection

Files and Keychain items can be made 
inaccessible when the device is locked 
(protected by Passcode Key)

Keychain items can be made non-migratable to 
other devices (protected by UID Key)

Wednesday, January 25, 12



Data Protection 
Coverage
In iOS 4, DP is only used by the built-in Mail app

Protects all mail messages, attachments, and indexes

Protects passwords for IMAP, SMTP servers

Protected items are only accessible when device is unlocked

Exchange ActiveSync passwords are accessible always to 
preserve remote wipe functionality

DP is also used for automatic UI screenshots generated when 
user hits the Home Button.

Wednesday, January 25, 12



Attacking Passcode
With knowledge of passcode, you can decrypt the data protected 
by iOS Data Protection

Increasing incorrect passcode delay and forced device wipe after 
too many incorrect guesses are enforced by UI

Springboard -> MobileKeyBag Framework -> AppleKeyStore 
IOKit UserClient -> AppleKeyStore Kernel Extension

On a jailbroken device, you can guess passcodes directly using the 
MKB Framework or AppleKeyStore IOKit User Client

Jailbreak device using BootROM exploit, install SSH bundle, 
restart, and log in via SSH over USBMUX

Wednesday, January 25, 12



Worst-Case Passcode 
Guessing Time (iPhone4)

Passcode Length Complexity Time

4 Numeric 18 minutes

4 Alphanumeric 51 hours

6 Alphanumeric 8 years

8 Alphanumeric 13 thousand years

8 Alphanumeric, 
Complex 2 million years

Assuming 26 lowercase letters + 10 digits + 34 complex characters = 70 chars

Wednesday, January 25, 12



Bottom Line
6-character alphanumeric passcodes sufficient

Unless attacker can extract UID Key from hardware

Lack of thorough Data Protection coverage is a serious issue

Wait to see what iOS 5 covers

Audit third-party apps for Data Protection usage

iPad2 and iPhone 4S have no public Boot ROM exploits, 
making attacks on lost devices much more difficult and 
unlikely

Wednesday, January 25, 12



Conclusion

Wednesday, January 25, 12



Summary of Findings
Although filesystem is encrypted with block-level 
encryption, exploiting the device’s BootROM and 
booting jailbroken can be used to read the data

In iOS 4, Data Protection only protects Mail 
messages and passwords (and screenshots) with 
user’s passcode

While passcode must be cracked on-device, default 
simple passcodes are brute-force cracked in less 
than 20 minutes 

Wednesday, January 25, 12



Attacks You Should 
Care Most About
Lost/stolen device

How well is iOS and third-party app data protected?

Repurposed jailbreak exploits

JailbreakMe PDF attacks via e-mail or web

Stolen Enterprise In-House Distribution Certificate and 
social engineering OTA app links

Apps containing kernel exploit from JB

Wednesday, January 25, 12



Questions?
Slides, code, and paper available on blog:
http://blog.trailofbits.com

@dinodaizovi / ddz@theta44.org

Shameless self-promotional plug:

Pre-order The iOS Hacker’s Handbook by Charlie 
Miller, Dion Blazakis, Dino Dai Zovi, Stefan Esser, 
and Ralf-Philip Weinman today!

Wednesday, January 25, 12

http://blog.trailofbits.com
http://blog.trailofbits.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

