

Use of Rapid prototyping to optimise surgical planning and decision support for Total Hip Replacement

Paolo Gargiulo Centre of Biomedical Engineering LSH&HR

Heilbrigðisráðstefna Fókus

- Clinical evaluation score for Total Hip Replacement planning and post-operative assessment
- Integrated Medical Modeling and Rapid prototyping Service

IT @ Health care @ BME

Clinical evaluation score for Total Hip Replacement planning and postoperative assessment

Develop a monitoring techniques based on Gait analysis and bone density changes to assess patient recovery after Total Hip Replacement (THR).

Validate computational processes based on 3D modeling and Finite Element Methods (FEM) for optimizing decision making in THR and selecting the optimal surgical procedure.

LANDSPITAL

Cement vs. Uncemented

		Туре	Number	Therapy cost	Dpt cost
Total Hip Replacment cost	Primary €	Cem	159	3200	2150
		Unc	105	3100	1600
		Total	264		
year 2012	Povision	Cem	16	7800	4200
,		Unc	5	5700	1600
	revision e	Mixed	6	10500	2350
	e	Total	27		

LANDSPÍTALI Umnyggja - Fagmennska - Uryggi - Framproun

LANDSPÍTALI

Uncemented Surgery

Clinical Trial & time plane

•GaitRite sensor carpet and control station • KinePro videocamera + LED markers, wireless EMG and control station

Pre- surgery

•Gait measurments		•Gait measurments	•Gait measurments	
•Kine view	•Spiral CT	•Kine view	•Kine view	
•GaitRite		•GaitRite •GaitRite		
Spiral CT		•Spiral CT		

Load distribution changes

Department of Science, Education and Innovation

LANDSPITAL

EMG Analysis

KinePro THR -1 year/03 - Si	grun/r1/m01\Default document								
Elle Edit Scaling Measureme	ent Fijters Tools Help								
Display M	Measurement Preview	Capture							
🗶 Measurement, frame: 130			_	🗖 🔀 🕺 Display					
						k			
				EMG-2 EMG-2 reference		- All mapp		~~ \ \\-	dy
				EMG-3 EMG-3 reference			ų.		
				EMG-4 EMG-4 reference	-	up hilosophilis	ng ang have	milliogen	Anfor
Simple gait report		-		-2.480 s - + 4		2.601 s			

BMD analysis: / Region of interest

- Femoral bone thresholding and segmentation is performed in MIMICS
 - 3D masks of femur are created
- BMD is calculated from proximal femur in the region between femur head and lesser trocanter, as shown in the figure
- A linear relationship between HU and BMD values has been determined with CT scan device calibration

Bone Mineral Density: pre op

Muscle Density: Pre op

LANDSPÍTAL

Department of Science, Education and Innovation

Gait Analysis assessment after 1year

- Gait measurements useful in post-op assessment
- Recovery after surgery varies between patients
- Indicate that cemented patients recover faster

LANDSPÍTAL

Department of Science, Education and Innovation

Bone and muscle assessment after 1year

- BMD measurements are valueable pre-opand post-op assessment
- Muscle density (RF) assessment useful in post-op assessment
- Both types of measurements indicate faster recovery of cemented patients

LANDSPÍTAL

Department of Science, Education and Innovation

Fracture risk assessment pre op

 The bone fracture risk index (FRI) expresses the risk for structural failure as a ratio of compressive stress (load per unit area) to estimated failure stress

$$FRI\% = \frac{\varepsilon_{max}}{\varepsilon_{yield}} * 100\%$$

Strain distribution

SAFE CASES...

RISK CASE 76 yr old female

Information exchange and Data base

Patient Page	Cemented Left
Kennitala: Age: 71 Gender: F Weight: 95 Prosthesis Type: Cemented Operated side: Left	Files: Observations:
Bone density measures	
Patient page - Kine files	
Patient page - MIMICS-ANSY	'S
Patient page - sEMG	

Integrated Medical Modeling and Rapid prototyping Service

Ferill verks

1. Sneiðmynd af sjúklingi 2. Þvívíddarmynd í tölvu 3. Líkan búið til eftir mynd

Lágmarksafhendingartími er 24 klst eftir myndatöku Paolo Gargiulo *) Frekari upplýsingar veitir: s. 1533 eða 8245384 E-mail: paologar@landspitali is

- Rapid Prothotyping: technique that allow the 3D image to be accurately reproduced in a few hours as an acrylic model which can be handled by the surgeon, allowing an immediate and intuitive understanding of the most complex 3-D geometry and can be used to accurately plan and practice an awkward operative procedure. (McGurk, M., et al., 1997)
- Rapid prototyping isn't a new process, it was introduced in the 1980's to define new techniques for the manufacturing of physical models and was originally introduced in industry to improve design and reduce product development time.
- Applications in medicine of RP technologies as support for surgical planning are seen already in 1994 (Mankovich N. et al., 1994)

Clinical Applications

- Diagnostic: supporting pathologist with visualization of difficult anatomical case
- Planning surgery in complicate orthopaedic and maxilla facial operation
- Patient follow up in craniofacial trauma, studying structural changes in bone and soft tissue
- Patient compliance providing computer simulating in maxilla lengthening
- Complex hearth surgery planning
- Brain surgery@ navigation systems
- Prosthesis design

Implementation and Integration in Clinical Processes

Steps	Actions to implement a Medical Modeling
	Process
1	Select the optimal medical modality to provide best visualization of the anatomical structure of interest (CT or MRI)
2	Set the appropriate scanning protocol for the region of interest
3	Retrieve the scan data from the Hospital
4	PACS Import the scan data to a medical image processing software and segment the region of interest
5	Import the segmented model to 3D Print software and start printing
6	Deliver the model to clinical personnel

Planning Mandible Lengthening surgery

LANDSPÍTALI

Department of Science, Education and Innovation

Planning Mandible Lengthening surgery

Combined use of Rapid Prototyping techniques and navigation system for brain surgery planning

A navigation system allow surgeons to visualize the patient's anatomy in 3D prior to and during surgery while also seeing the exact location of their surgical instrumentation

Study Case: Chalesteatoma Removal

42 years old patient with
a cholesterol granuloma
in a very complicate
position, wrapped
between the middle ear
bones

Surgical Plannig based on the 3D-Model

LANDSPITAL

Emerging applications: Cardio Surgery planning

Takahashi S et al. Interact CardioVasc Thorac Surg 2012;14:353-355

cut

Patch Scale model 1:1 in RV

Patch Scale model 1:1 in left V

Economic and social benefits

- Reduction operation time: According to Hagdeild LSH, the operation cost per minute for the surgeries that have 4000 to 7000 ISK per minutes. Up 90 minutes.
- Avoid unnec type, but addii department co millions/surgery

vp 90 minutes. rom the surgery bciated less than 5

Improve patient out
 aving patient life ...

